If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50a^2-8=0
a = 50; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·50·(-8)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*50}=\frac{-40}{100} =-2/5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*50}=\frac{40}{100} =2/5 $
| 6=8u-6u | | 2v+2=21 | | 3.2=15.7-5u | | d=13=55 | | 24z-2=29z-30 | | .4x-8=9-0.6 | | 2s+3=s+43 | | z+15=79 | | 2p-45=p+43 | | 2p-73=p+2 | | 2.5x+100=699 | | u+2=37 | | 2p-11=p+48 | | d+41=76 | | t-26=5 | | 2x-39=x+24 | | 2c-9=c+39 | | r+21=90 | | 66+3s=6s-14 | | 43+3s+23=6s-14 | | 13x-9x+20=20+3x+10 | | 7x-9=15+5x=0 | | 81(n)=9 | | -v+163=66 | | 273=-y+77 | | 240=6-w | | 18d+3d+5d-12d=15 | | 6z/6z=1 | | 81=3^4x+1 | | 13j2+32j=0 | | 10m-19m=-6 | | 5b+6=b+50 |